MLflow, an open-source framework that’s used by many organizations to manage their machine-learning tests and record results, received a patch for a critical vulnerability that could allow attackers to extract sensitive information from servers such as SSH keys and AWS credentials. The attacks can be executed remotely without authentication because MLflow doesn’t implement authentication by default and an increasing number of MLflow deployments are directly exposed to the internet.
“Basically, every organization that uses this tool is at risk of losing their AI models, having an internal server compromised, and having their AWS account compromised,” Dan McInerney, a senior security engineer with cybersecurity startup Protect AI, told CSO. “It’s pretty brutal.”
More Stories
Friday Squid Blogging: Squid Sticker
A sticker for your water bottle. Blog moderation policy. Read More
Italy’s Data Protection Watchdog Issues €15m Fine to OpenAI Over ChatGPT Probe
OpenAI must also initiate a six-month public awareness campaign across Italian media, explaining how it processes personal data for AI...
Ukraine’s Security Service Probes GRU-Linked Cyber-Attack on State Registers
The Security Service of Ukraine has accused Russian-linked actors of perpetrating a cyber-attack against the state registers of Ukraine Read...
LockBit Admins Tease a New Ransomware Version
The LockBitSupp persona said LockBit 4.0 will be launched in February 2025 Read More
Webcams and DVRs Vulnerable to HiatusRAT, FBI Warns
The FBI has issued a warning about the Hiatus RAT malware targeting Xiongmai and Hikvision web cameras and DVRs, urging...
CISA Urges Encrypted Messaging After Salt Typhoon Hack
The US Cybersecurity and Infrastructure Security Agency recommended users turn on phishing-resistant MFA and switch to Signal-like apps for messaging...