Yet another adversarial ML attack:
Most deep neural networks are trained by stochastic gradient descent. Now “stochastic” is a fancy Greek word for “random”; it means that the training data are fed into the model in random order.
So what happens if the bad guys can cause the order to be not random? You guessed it—all bets are off. Suppose for example a company or a country wanted to have a credit-scoring system that’s secretly sexist, but still be able to pretend that its training was actually fair. Well, they could assemble a set of financial data that was representative of the whole population, but start the model’s training on ten rich men and ten poor women drawn from that set then let initialisation bias do the rest of the work.
Does this generalise? Indeed it does. Previously, people had assumed that in order to poison a model or introduce backdoors, you needed to add adversarial samples to the training data. Our latest paper shows that’s not necessary at all. If an adversary can manipulate the order in which batches of training data are presented to the model, they can undermine both its integrity (by poisoning it) and its availability (by causing training to be less effective, or take longer). This is quite general across models that use stochastic gradient descent.
Research paper.
More Stories
US and Japan Blame North Korea for $308m Crypto Heist
A joint US-Japan alert attributed North Korean hackers with a May 2024 crypto heist worth $308m from Japan-based company DMM...
Spyware Maker NSO Group Found Liable for Hacking WhatsApp
A judge has found that NSO Group, maker of the Pegasus spyware, has violated the US Computer Fraud and Abuse...
Spyware Maker NSO Group Liable for WhatsApp User Hacks
A US judge has ruled in favor of WhatsApp in a long-running case against commercial spyware-maker NSO Group Read More
Major Biometric Data Farming Operation Uncovered
Researchers at iProov have discovered a dark web group compiling identity documents and biometric data to bypass KYC checks Read...
Ransomware Attack Exposes Data of 5.6 Million Ascension Patients
US healthcare giant Ascension revealed that 5.6 million individuals have had their personal, medical and financial information breached in a...
Critical Vulnerabilities Found in WordPress Plugins WPLMS and VibeBP
The vulnerabilities, now patched, posed significant risks, including unauthorized file uploads, privilege escalation and SQL injection attacks Read More