All posts by rocco

Vulnerabilities of the TLS Protocol

Read Time:2 Minute, 6 Second

Secure Socket Layer (SSL) and its successor, Transport Layer Security (TLS), are widely used protocols for secure online communication. They provide encryption and authentication between two applications over a network, ensuring the confidentiality and integrity of data transmitted between them.

However, SSL/TLS is not invulnerable, and over the years, several vulnerabilities have been discovered that can compromise the security of online transactions. One of the most significant vulnerabilities is the POODLE attack, discovered in 2014, which affects the older versions of SSL/TLS. This vulnerability allows an attacker to exploit the way SSL/TLS handles padding in the encryption process, enabling them to read encrypted information, including sensitive information such as passwords and credit card numbers.

Another vulnerability is the BEAST attack, which exploits a vulnerability in the way SSL/TLS handles block ciphers in older versions of the protocol. This attack allows an attacker to intercept and decrypt secure HTTPS cookies, potentially giving them access to sensitive data.

A third vulnerability is known as the DROWN attack, which can exploit weak encryption protocols such as SSLv2. The attack allows an attacker to read encrypted data transmitted over an SSL/TLS connection by exploiting a flaw in the SSLv2 protocol. Even though SSLv2 is now considered obsolete and no longer used, some older systems may still have it enabled, leaving them vulnerable to attack.

To ensure the maximum security of your online transactions, it’s essential to be aware of the potential vulnerabilities of SSL/TLS and to take necessary precautions. To start with, it’s recommended to use the latest version of TLS, which is currently TLS 1.3, and to disable support for older, insecure protocols like SSLv2 and SSLv3.

It’s also important to use strong encryption ciphers and to regularly test your TLS configuration for potential vulnerabilities. This can be done using tools like SSL Labs’ SSL Server Test, which can check the strength of your TLS configuration and identify any potential vulnerabilities.

Another crucial step is to regularly update your TLS certificates, which verify the identity of the server you’re communicating with and ensure that your data is not intercepted by an attacker. TLS certificates have an expiration date, so it’s essential to keep them up to date to ensure maximum security.

Finally, consider using other security measures like firewalls, antivirus software, and two-factor authentication to provide an additional layer of protection.

By taking these necessary precautions, you can significantly reduce the risk of SSL/TLS vulnerabilities and ensure the maximum security of your online transactions.

CWE

Read Time:1 Minute, 11 Second

CWE (Common Weakness Enumeration) is a list of common types of hardware and software defects that have security implications. The CWE list can be used as a framework to describe and communicate such vulnerabilities in terms of CWEs.

The goal is to support all those methods (including automatic ones) to control and prevent software errors. It can be used at the development stage, during the Code Review activity, and later on during the penetration test activity to classify and communicate the vulnerability type to developers. The system is at version 4.7 and contains over 600 categories of weaknesses and vulnerabilities

The CWE Top 25 Most Dangerous Software Weakness List is a list of the most common programming errors that can lead to software vulnerabilities. Vulnerabilities present in the CWE Top 25 are usually easy to detect and exploit. For example, the CWE-79 is related to Cross-Site Scripting while the CWE-89 to SQL Injection. A similar project is Top Ten Owasp (Open Web Application Security Project). Compared to the CWE Top 25, the Top Ten OWASP focuses solely on vulnerabilities of web applications.
The CWE Most Important Hardware Weakness List serves the same purpose, but it focuses on hardware defects.

Please check our post about Vulnerability Analysis to learn more about CWE usage.

Please find a list of all the CWE below or use the search box above to find a specific CWE.

CWE-669 – Incorrect Resource Transfer Between Spheres

Read Time:49 Second

Description

The product does not properly transfer a resource/behavior to another sphere, or improperly imports a resource/behavior from another sphere, in a manner that provides unintended control over that resource.

A “control sphere” is a set of resources and behaviors that are accessible to a single actor, or a group of actors. A product’s security model will typically define multiple spheres, possibly implicitly. For example, a server might define one sphere for “administrators” who can create new user accounts with subdirectories under /home/server/, and a second sphere might cover the set of users who can create or delete files within their own subdirectories. A third sphere might be “users who are authenticated to the operating system on which the product is installed.” Each sphere has different sets of actors and allowable behaviors.

Modes of Introduction:

– Architecture and Design

 

 

Related Weaknesses

CWE-664

 

Consequences

Confidentiality, Integrity: Read Application Data, Modify Application Data, Unexpected State

 

Potential Mitigations

CVE References

CWE-67 – Improper Handling of Windows Device Names

Read Time:2 Minute, 22 Second

Description

The software constructs pathnames from user input, but it does not handle or incorrectly handles a pathname containing a Windows device name such as AUX or CON. This typically leads to denial of service or an information exposure when the application attempts to process the pathname as a regular file.

Not properly handling virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in different types of vulnerabilities. In some cases an attacker can request a device via injection of a virtual filename in a URL, which may cause an error that leads to a denial of service or an error page that reveals sensitive information. A software system that allows device names to bypass filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.

Historically, there was a bug in the Windows operating system that caused a blue screen of death. Even after that issue was fixed DOS device names continue to be a factor.

Modes of Introduction:

– Architecture and Design

 

Likelihood of Exploit: High

 

Related Weaknesses

CWE-66

 

Consequences

Availability, Confidentiality, Other: DoS: Crash, Exit, or Restart, Read Application Data, Other

 

Potential Mitigations

Phase: Implementation

Description: 

Be familiar with the device names in the operating system where your system is deployed. Check input for these device names.

CVE References

  • CVE-2002-0106
    • Server allows remote attackers to cause a denial of service via a series of requests to .JSP files that contain an MS-DOS device name.
  • CVE-2002-0200
    • Server allows remote attackers to cause a denial of service via an HTTP request for an MS-DOS device name.
  • CVE-2002-1052
    • Product allows remote attackers to use MS-DOS device names in HTTP requests to cause a denial of service or obtain the physical path of the server.
  • CVE-2001-0493
    • Server allows remote attackers to cause a denial of service via a URL that contains an MS-DOS device name.
  • CVE-2001-0558
    • Server allows a remote attacker to create a denial of service via a URL request which includes a MS-DOS device name.
  • CVE-2000-0168
    • Microsoft Windows 9x operating systems allow an attacker to cause a denial of service via a pathname that includes file device names, aka the “DOS Device in Path Name” vulnerability.
  • CVE-2001-0492
    • Server allows remote attackers to determine the physical path of the server via a URL containing MS-DOS device names.
  • CVE-2004-0552
    • Product does not properly handle files whose names contain reserved MS-DOS device names, which can allow malicious code to bypass detection when it is installed, copied, or executed.
  • CVE-2005-2195
    • Server allows remote attackers to cause a denial of service (application crash) via a URL with a filename containing a .cgi extension and an MS-DOS device name.

CWE-670 – Always-Incorrect Control Flow Implementation

Read Time:49 Second

Description

The code contains a control flow path that does not reflect the algorithm that the path is intended to implement, leading to incorrect behavior any time this path is navigated.

This weakness captures cases in which a particular code segment is always incorrect with respect to the algorithm that it is implementing. For example, if a C programmer intends to include multiple statements in a single block but does not include the enclosing braces (CWE-483), then the logic is always incorrect. This issue is in contrast to most weaknesses in which the code usually behaves correctly, except when it is externally manipulated in malicious ways.

Modes of Introduction:

– Architecture and Design

 

 

Related Weaknesses

CWE-691

 

Consequences

Other: Other, Alter Execution Logic

 

Potential Mitigations

CVE References

  • CVE-2021-3011
    • virtual interrupt controller in a virtualization product allows crash of host by writing a certain invalid value to a register, which triggers a fatal error instead of returning an error code

CWE-671 – Lack of Administrator Control over Security

Read Time:39 Second

Description

The product uses security features in a way that prevents the product’s administrator from tailoring security settings to reflect the environment in which the product is being used. This introduces resultant weaknesses or prevents it from operating at a level of security that is desired by the administrator.

If the product’s administrator does not have the ability to manage security-related decisions at all times, then protecting the product from outside threats – including the product’s developer – can become impossible. For example, a hard-coded account name and password cannot be changed by the administrator, thus exposing that product to attacks that the administrator can not prevent.

Modes of Introduction:

– Architecture and Design

 

 

Related Weaknesses

CWE-657

 

Consequences

Other: Varies by Context

 

Potential Mitigations

CVE References

CWE-672 – Operation on a Resource after Expiration or Release

Read Time:41 Second

Description

The software uses, accesses, or otherwise operates on a resource after that resource has been expired, released, or revoked.

Modes of Introduction:

– Architecture and Design

 

 

Related Weaknesses

CWE-666

 

Consequences

Integrity, Confidentiality: Modify Application Data, Read Application Data

If a released resource is subsequently reused or reallocated, then an attempt to use the original resource might allow access to sensitive data that is associated with a different user or entity.

Other, Availability: Other, DoS: Crash, Exit, or Restart

When a resource is released it might not be in an expected state, later attempts to access the resource may lead to resultant errors that may lead to a crash.

 

Potential Mitigations

CVE References

  • CVE-2009-3547
    • chain: race condition might allow resource to be released before operating on it, leading to NULL dereference

CWE-673 – External Influence of Sphere Definition

Read Time:22 Second

Description

The product does not prevent the definition of control spheres from external actors.

Typically, a product defines its control sphere within the code itself, or through configuration by the product’s administrator. In some cases, an external party can change the definition of the control sphere. This is typically a resultant weakness.

Modes of Introduction:

– Architecture and Design

 

 

Related Weaknesses

CWE-664

 

Consequences

Other: Other

 

Potential Mitigations

CVE References

CWE-674 – Uncontrolled Recursion

Read Time:1 Minute, 29 Second

Description

The product does not properly control the amount of recursion which takes place, consuming excessive resources, such as allocated memory or the program stack.

Modes of Introduction:

– Implementation

 

 

Related Weaknesses

CWE-691

 

Consequences

Availability: DoS: Resource Consumption (CPU), DoS: Resource Consumption (Memory)

Resources including CPU, memory, and stack memory could be rapidly consumed or exhausted, eventually leading to an exit or crash.

Confidentiality: Read Application Data

In some cases, an application’s interpreter might kill a process or thread that appears to be consuming too much resources, such as with PHP’s memory_limit setting. When the interpreter kills the process/thread, it might report an error containing detailed information such as the application’s installation path.

 

Potential Mitigations

Phase: Implementation

Effectiveness: Moderate

Description: 

Ensure an end condition will be reached under all logic conditions. The end condition may include testing against the depth of recursion and exiting with an error if the recursion goes too deep. The complexity of the end condition contributes to the effectiveness of this action.

Phase: Implementation

Effectiveness: Limited

Description: 

Increase the stack size.

Increasing the stack size might only be a temporary measure, since the stack typically is still not very large, and it might remain easy for attackers to cause an out-of-stack fault.

CVE References

  • CVE-2007-3409
    • Self-referencing pointers create infinite loop and resultant stack exhaustion.
  • CVE-2016-10707
    • Javascript application accidentally changes input in a way that prevents a recursive call from detecting an exit condition.
  • CVE-2016-3627
    • An attempt to recover a corrupted XML file infinite recursion protection counter was not always incremented missing the exit condition.
  • CVE-2019-15118
    • USB-audio driver’s descriptor code parsing allows unlimited recursion leading to stack exhaustion.