Marek Marczykowski-Górecki discovered that the Xen event channel
infrastructure implementation in the Linux kernel contained a race
condition. An attacker in a guest VM could possibly use this to cause a
denial of service (paravirtualized device unavailability). (CVE-2023-34324)
Zheng Wang discovered a use-after-free in the Renesas Ethernet AVB driver
in the Linux kernel during device removal. A privileged attacker could use
this to cause a denial of service (system crash). (CVE-2023-35827)
Tom Dohrmann discovered that the Secure Encrypted Virtualization (SEV)
implementation for AMD processors in the Linux kernel contained a race
condition when accessing MMIO registers. A local attacker in a SEV guest VM
could possibly use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-46813)
It was discovered that the io_uring subsystem in the Linux kernel contained
a race condition, leading to a null pointer dereference vulnerability. A
local attacker could use this to cause a denial of service (system crash).
(CVE-2023-46862)
It was discovered that a race condition existed in the ATM (Asynchronous
Transfer Mode) subsystem of the Linux kernel, leading to a use-after-free
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2023-51780)
It was discovered that a race condition existed in the AppleTalk networking
subsystem of the Linux kernel, leading to a use-after-free vulnerability. A
local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2023-51781)
It was discovered that the netfilter subsystem in the Linux kernel did not
properly validate inner tunnel netlink attributes, leading to a null
pointer dereference vulnerability. A local attacker could use this to cause
a denial of service (system crash). (CVE-2023-5972)
It was discovered that the TLS subsystem in the Linux kernel did not
properly perform cryptographic operations in some situations, leading to a
null pointer dereference vulnerability. A local attacker could use this to
cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2023-6176)
Jann Horn discovered that a race condition existed in the Linux kernel when
handling io_uring over sockets, leading to a use-after-free vulnerability.
A local attacker could use this to cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2023-6531)
Xingyuan Mo discovered that the netfilter subsystem in the Linux kernel did
not properly handle dynset expressions passed from userspace, leading to a
null pointer dereference vulnerability. A local attacker could use this to
cause a denial of service (system crash). (CVE-2023-6622)
Zhenghan Wang discovered that the generic ID allocator implementation in
the Linux kernel did not properly check for null bitmap when releasing IDs.
A local attacker could use this to cause a denial of service (system
crash). (CVE-2023-6915)
Robert Morris discovered that the CIFS network file system implementation
in the Linux kernel did not properly validate certain server commands
fields, leading to an out-of-bounds read vulnerability. An attacker could
use this to cause a denial of service (system crash) or possibly expose
sensitive information. (CVE-2024-0565)
Jann Horn discovered that the io_uring subsystem in the Linux kernel did
not properly handle the release of certain buffer rings. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2024-0582)
It was discovered that the TIPC protocol implementation in the Linux kernel
did not properly handle locking during tipc_crypto_key_revoke() operations.
A local attacker could use this to cause a denial of service (kernel
deadlock). (CVE-2024-0641)
Jann Horn discovered that the TLS subsystem in the Linux kernel did not
properly handle spliced messages, leading to an out-of-bounds write
vulnerability. A local attacker could use this to cause a denial of service
(system crash) or possibly execute arbitrary code. (CVE-2024-0646)
More Stories
USN-7179-1: Linux kernel vulnerabilities
Andy Nguyen discovered that the Bluetooth L2CAP implementation in the Linux kernel contained a type-confusion error. A physically proximate remote...
USN-7173-2: Linux kernel vulnerabilities
Ziming Zhang discovered that the DRM driver for VMware Virtual GPU did not properly handle certain error conditions, leading to...
swiftlint-0.57.1-1.fc42
FEDORA-2024-87d30b4fbf Packages in this update: swiftlint-0.57.1-1.fc42 Update description: Automatic update for swiftlint-0.57.1-1.fc42. Changelog * Fri Dec 20 2024 Davide Cavalca...
USN-7166-3: Linux kernel (HWE) vulnerabilities
Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system. This...
USN-7159-4: Linux kernel (IoT) vulnerabilities
Several security issues were discovered in the Linux kernel. An attacker could possibly use these to compromise the system. This...
chromium-131.0.6778.204-1.el10_0
FEDORA-EPEL-2024-b98ed0b39c Packages in this update: chromium-131.0.6778.204-1.el10_0 Update description: Update to 131.0.6778.204 High CVE-2024-12692: Type Confusion in V8 High CVE-2024-12693: Out...