Read Time:1 Minute, 34 Second

It was discovered that the Upper Level Protocol (ULP) subsystem in the
Linux kernel did not properly handle sockets entering the LISTEN state in
certain protocols, leading to a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2023-0461)

It was discovered that a race condition existed in the Kernel Connection
Multiplexor (KCM) socket implementation in the Linux kernel when releasing
sockets in certain situations. A local attacker could use this to cause a
denial of service (system crash). (CVE-2022-3521)

It was discovered that the Netronome Ethernet driver in the Linux kernel
contained a use-after-free vulnerability. A local attacker could use this
to cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2022-3545)

It was discovered that the Broadcom FullMAC USB WiFi driver in the Linux
kernel did not properly perform bounds checking in some situations. A
physically proximate attacker could use this to craft a malicious USB
device that when inserted, could cause a denial of service (system crash)
or possibly execute arbitrary code. (CVE-2022-3628)

It was discovered that a use-after-free vulnerability existed in the
Bluetooth stack in the Linux kernel. A local attacker could use this to
cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2022-3640)

It was discovered that a race condition existed in the Xen network backend
driver in the Linux kernel when handling dropped packets in certain
circumstances. An attacker could use this to cause a denial of service
(kernel deadlock). (CVE-2022-42328, CVE-2022-42329)

Tamás Koczka discovered that the Bluetooth L2CAP implementation in the
Linux kernel did not properly initialize memory in some situations. A
physically proximate attacker could possibly use this to expose sensitive
information (kernel memory). (CVE-2022-42895)

Read More