USN-5339-1: Linux kernel vulnerabilities

Read Time:1 Minute, 16 Second

Yiqi Sun and Kevin Wang discovered that the cgroups implementation in the
Linux kernel did not properly restrict access to the cgroups v1
release_agent feature. A local attacker could use this to gain
administrative privileges. (CVE-2022-0492)

It was discovered that an out-of-bounds (OOB) memory access flaw existed in
the f2fs module of the Linux kernel. A local attacker could use this issue
to cause a denial of service (system crash). (CVE-2021-3506)

Brendan Dolan-Gavitt discovered that the Marvell WiFi-Ex USB device driver
in the Linux kernel did not properly handle some error conditions. A
physically proximate attacker could use this to cause a denial of service
(system crash). (CVE-2021-43976)

It was discovered that the ARM Trusted Execution Environment (TEE)
subsystem in the Linux kernel contained a race condition leading to a use-
after-free vulnerability. A local attacker could use this to cause a denial
of service or possibly execute arbitrary code. (CVE-2021-44733)

It was discovered that the Phone Network protocol (PhoNet) implementation
in the Linux kernel did not properly perform reference counting in some
error conditions. A local attacker could possibly use this to cause a
denial of service (memory exhaustion). (CVE-2021-45095)

Samuel Page discovered that the Transparent Inter-Process Communication
(TIPC) protocol implementation in the Linux kernel contained a stack-based
buffer overflow. A remote attacker could use this to cause a denial of
service (system crash) for systems that have a TIPC bearer configured.
(CVE-2022-0435)

Read More