Description
Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location, often as the result of a buffer overflow.
Modes of Introduction:
– Implementation
Likelihood of Exploit: High
Related Weaknesses
Consequences
Integrity, Confidentiality, Availability, Access Control: Modify Memory, Execute Unauthorized Code or Commands, Gain Privileges or Assume Identity, DoS: Crash, Exit, or Restart, Bypass Protection Mechanism
Clearly, write-what-where conditions can be used to write data to areas of memory outside the scope of a policy. Also, they almost invariably can be used to execute arbitrary code, which is usually outside the scope of a program’s implicit security policy. If the attacker can overwrite a pointer’s worth of memory (usually 32 or 64 bits), they can redirect a function pointer to their own malicious code. Even when the attacker can only modify a single byte arbitrary code execution can be possible. Sometimes this is because the same problem can be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite security-critical application-specific data — such as a flag indicating whether the user is an administrator.
Integrity, Availability: DoS: Crash, Exit, or Restart, Modify Memory
Many memory accesses can lead to program termination, such as when writing to addresses that are invalid for the current process.
Access Control, Other: Bypass Protection Mechanism, Other
When the consequence is arbitrary code execution, this can often be used to subvert any other security service.
Potential Mitigations
Phase: Architecture and Design
Description:
Use a language that provides appropriate memory abstractions.
Phase: Operation
Description:
Use OS-level preventative functionality integrated after the fact. Not a complete solution.
CVE References
More Stories
The Most Dangerous Vulnerabilities in Apache Tomcat and How to Protect Against Them
Apache Tomcat is an open-source web server and servlet container that is widely used in enterprise environments to run Java...
ZDI-CAN-18333: A Critical Zero-Day Vulnerability in Microsoft Windows
Zero-day vulnerabilities are a serious threat to cybersecurity, as they can be exploited by malicious actors to gain unauthorized access...
CWE-669 – Incorrect Resource Transfer Between Spheres
Description The product does not properly transfer a resource/behavior to another sphere, or improperly imports a resource/behavior from another sphere,...
CWE-67 – Improper Handling of Windows Device Names
Description The software constructs pathnames from user input, but it does not handle or incorrectly handles a pathname containing a...
CWE-670 – Always-Incorrect Control Flow Implementation
Description The code contains a control flow path that does not reflect the algorithm that the path is intended to...
CWE-671 – Lack of Administrator Control over Security
Description The product uses security features in a way that prevents the product's administrator from tailoring security settings to reflect...