Description
The SameSite attribute for sensitive cookies is not set, or an insecure value is used.
The SameSite attribute controls how cookies are sent for cross-domain requests. This attribute may have three values: ‘Lax’, ‘Strict’, or ‘None’. If the ‘None’ value is used, a website may create a cross-domain POST HTTP request to another website, and the browser automatically adds cookies to this request. This may lead to Cross-Site-Request-Forgery (CSRF) attacks if there are no additional protections in place (such as Anti-CSRF tokens).
Modes of Introduction:
– Implementation
Likelihood of Exploit: Medium
Related Weaknesses
Consequences
Confidentiality, Integrity, Non-Repudiation, Access Control: Modify Application Data
If the website does not impose additional defense against CSRF attacks, failing to use the ‘Lax’ or ‘Strict’ values could increase the risk of exposure to CSRF attacks. The likelihood of the integrity breach is Low because a successful attack does not only depend on an insecure SameSite attribute. In order to perform a CSRF attack there are many conditions that must be met, such as the lack of CSRF tokens, no confirmations for sensitive actions on the website, a “simple” “Content-Type” header in the HTTP request and many more.
Potential Mitigations
Phase: Implementation
Effectiveness: High
Description:
Set the SameSite attribute of a sensitive cookie to ‘Lax’ or ‘Strict’. This instructs the browser to apply this cookie only to same-domain requests, which provides a good Defense in Depth against CSRF attacks. When the ‘Lax’ value is in use, cookies are also sent for top-level cross-domain navigation via HTTP GET, HEAD, OPTIONS, and TRACE methods, but not for other HTTP methods that are more like to cause side-effects of state mutation.
While this mitigation is effective for protecting cookies from a browser’s own scripting engine, third-party components or plugins may have their own engines that allow access to cookies. Attackers might also be able to use XMLHTTPResponse to read the headers directly and obtain the cookie.
CVE References
More Stories
The Most Dangerous Vulnerabilities in Apache Tomcat and How to Protect Against Them
Apache Tomcat is an open-source web server and servlet container that is widely used in enterprise environments to run Java...
ZDI-CAN-18333: A Critical Zero-Day Vulnerability in Microsoft Windows
Zero-day vulnerabilities are a serious threat to cybersecurity, as they can be exploited by malicious actors to gain unauthorized access...
CWE-669 – Incorrect Resource Transfer Between Spheres
Description The product does not properly transfer a resource/behavior to another sphere, or improperly imports a resource/behavior from another sphere,...
CWE-67 – Improper Handling of Windows Device Names
Description The software constructs pathnames from user input, but it does not handle or incorrectly handles a pathname containing a...
CWE-670 – Always-Incorrect Control Flow Implementation
Description The code contains a control flow path that does not reflect the algorithm that the path is intended to...
CWE-671 – Lack of Administrator Control over Security
Description The product uses security features in a way that prevents the product's administrator from tailoring security settings to reflect...