This is really interesting research from a few months ago:
Abstract: Given the computational cost and technical expertise required to train machine learning models, users may delegate the task of learning to a service provider. Delegation of learning has clear benefits, and at the same time raises serious concerns of trust. This work studies possible abuses of power by untrusted learners.We show how a malicious learner can plant an undetectable backdoor into a classifier. On the surface, such a backdoored classifier behaves normally, but in reality, the learner maintains a mechanism for changing the classification of any input, with only a slight perturbation. Importantly, without the appropriate “backdoor key,” the mechanism is hidden and cannot be detected by any computationally-bounded observer. We demonstrate two frameworks for planting undetectable backdoors, with incomparable guarantees.
First, we show how to plant a backdoor in any model, using digital signature schemes. The construction guarantees that given query access to the original model and the backdoored version, it is computationally infeasible to find even a single input where they differ. This property implies that the backdoored model has generalization error comparable with the original model. Moreover, even if the distinguisher can request backdoored inputs of its choice, they cannot backdoor a new inputa property we call non-replicability.
Second, we demonstrate how to insert undetectable backdoors in models trained using the Random Fourier Features (RFF) learning paradigm (Rahimi, Recht; NeurIPS 2007). In this construction, undetectability holds against powerful white-box distinguishers: given a complete description of the network and the training data, no efficient distinguisher can guess whether the model is “clean” or contains a backdoor. The backdooring algorithm executes the RFF algorithm faithfully on the given training data, tampering only with its random coins. We prove this strong guarantee under the hardness of the Continuous Learning With Errors problem (Bruna, Regev, Song, Tang; STOC 2021). We show a similar white-box undetectable backdoor for random ReLU networks based on the hardness of Sparse PCA (Berthet, Rigollet; COLT 2013).
Our construction of undetectable backdoors also sheds light on the related issue of robustness to adversarial examples. In particular, by constructing undetectable backdoor for an “adversarially-robust” learning algorithm, we can produce a classifier that is indistinguishable from a robust classifier, but where every input has an adversarial example! In this way, the existence of undetectable backdoors represent a significant theoretical roadblock to certifying adversarial robustness.
Turns out that securing ML systems is really hard.
More Stories
The AI Fix #30: ChatGPT reveals the devastating truth about Santa (Merry Christmas!)
In episode 30 of The AI Fix, AIs are caught lying to avoid being turned off, Apple’s AI flubs a...
US and Japan Blame North Korea for $308m Crypto Heist
A joint US-Japan alert attributed North Korean hackers with a May 2024 crypto heist worth $308m from Japan-based company DMM...
Spyware Maker NSO Group Found Liable for Hacking WhatsApp
A judge has found that NSO Group, maker of the Pegasus spyware, has violated the US Computer Fraud and Abuse...
Spyware Maker NSO Group Liable for WhatsApp User Hacks
A US judge has ruled in favor of WhatsApp in a long-running case against commercial spyware-maker NSO Group Read More
Major Biometric Data Farming Operation Uncovered
Researchers at iProov have discovered a dark web group compiling identity documents and biometric data to bypass KYC checks Read...
Ransomware Attack Exposes Data of 5.6 Million Ascension Patients
US healthcare giant Ascension revealed that 5.6 million individuals have had their personal, medical and financial information breached in a...