Multiple Vulnerabilities in Google Chrome Could Allow for Arbitrary Code Execution

Read Time:27 Second

Multiple vulnerabilities have been discovered in Google Chrome, the most severe of which could allow for arbitrary code execution. Successful exploitation of these vulnerabilities could allow for arbitrary code execution in the context of the logged on user. Depending on the privileges associated with the user an attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than those who operate with administrative user rights.

Read More

Multiple Vulnerabilities in Mozilla Products Could Allow for Arbitrary Code Execution

Read Time:36 Second

Multiple vulnerabilities have been discovered in Mozilla products, the most severe of which could allow for arbitrary code execution.

Mozilla Firefox is a web browser used to access the Internet.
Mozilla Firefox ESR is a version of the web browser intended to be deployed in large organizations.
Mozilla Thunderbird is an email client.
Successful exploitation of the most severe of these vulnerabilities could allow for arbitrary code execution. Depending on the privileges associated with the user an attacker could then install programs; view, change, or delete data; or create new accounts with full user rights. Users whose accounts are configured to have fewer user rights on the system could be less impacted than those who operate with administrative user rights.

Read More

Side Channels Are Common

Read Time:1 Minute, 6 Second

Really interesting research: “Lend Me Your Ear: Passive Remote Physical Side Channels on PCs.”

Abstract:

We show that built-in sensors in commodity PCs, such as microphones, inadvertently capture electromagnetic side-channel leakage from ongoing computation. Moreover, this information is often conveyed by supposedly-benign channels such as audio recordings and common Voice-over-IP applications, even after lossy compression.

Thus, we show, it is possible to conduct physical side-channel attacks on computation by remote and purely passive analysis of commonly-shared channels. These attacks require neither physical proximity (which could be mitigated by distance and shielding), nor the ability to run code on the target or configure its hardware. Consequently, we argue, physical side channels on PCs can no longer be excluded from remote-attack threat models.

We analyze the computation-dependent leakage captured by internal microphones, and empirically demonstrate its efficacy for attacks. In one scenario, an attacker steals the secret ECDSA signing keys of the counterparty in a voice call. In another, the attacker detects what web page their counterparty is loading. In the third scenario, a player in the Counter-Strike online multiplayer game can detect a hidden opponent waiting in ambush, by analyzing how the 3D rendering done by the opponent’s computer induces faint but detectable signals into the opponent’s audio feed.

Read More