Xiongmai Technology Co devices AHB7008T-MH-V2, AHB7804R-ELS, AHB7804R-MH-V2, AHB7808R-MS-V2, AHB7808R-MS, AHB7808T-MS-V2, AHB7804R-LMS, and HI3518E_50H10L_S39 were all discovered to have port 9530 open which allows unauthenticated attackers to make arbitrary Telnet connections with the victim device.
Yearly Archives: 2022
Smashing Security podcast #269: Trezor Deep Throat, a CCTV stalker, and Amazon’s list of banned words
There’s monkey business involving cryptocurrency thieves and MailChimp, a stalker exploits his ex-partner’s CCTV cameras, and what are the naughty words Amazon doesn’t want its staff using?
All this and much more is discussed in the latest edition of the award-winning “Smashing Security” podcast by computer security veterans Graham Cluley and Carole Theriault, joined this week by Zoë Rose.
New cryptomining malware targets AWS Lambda
Malware authors are keeping with the times and when it comes to server-oriented malware. Specifically, attackers will adopt the same technologies their target organizations are using. Security researchers have recently come across a cryptocurrency miner that was designed to run inside AWS Lambda, a so-called serverless computing platform designed to execute user-supplied application code on demand.
“Although this first sample is fairly innocuous in that it only runs cryptomining software, it demonstrates how attackers are using advanced cloud-specific knowledge to exploit complex cloud infrastructure, and is indicative of potential future, more nefarious attacks,” researchers from Cado Security who found the malware program, said in their report.
Attackers create malware for serverless computing platforms like AWS Lambda
Malware authors are keeping with the times and when it comes to server-oriented malware. Specifically, attackers will adopt the same technologies their target organizations are using. Security researchers have recently come across a cryptocurrency miner that was designed to run inside AWS Lambda, a so-called serverless computing platform designed to execute user-supplied application code on demand.
“Although this first sample is fairly innocuous in that it only runs cryptomining software, it demonstrates how attackers are using advanced cloud-specific knowledge to exploit complex cloud infrastructure, and is indicative of potential future, more nefarious attacks,” researchers from Cado Security who found the malware program, said in their report.
USN-5368-1: Linux kernel vulnerabilities
It was discovered that the BPF verifier in the Linux kernel did not
properly restrict pointer types in certain situations. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2022-23222)
It was discovered that the network traffic control implementation in the
Linux kernel contained a use-after-free vulnerability. A local attacker
could use this to cause a denial of service (system crash) or possibly
execute arbitrary code. (CVE-2022-1055)
Yiqi Sun and Kevin Wang discovered that the cgroups implementation in the
Linux kernel did not properly restrict access to the cgroups v1
release_agent feature. A local attacker could use this to gain
administrative privileges. (CVE-2022-0492)
Jürgen Groß discovered that the Xen subsystem within the Linux kernel did
not adequately limit the number of events driver domains (unprivileged PV
backends) could send to other guest VMs. An attacker in a driver domain
could use this to cause a denial of service in other guest VMs.
(CVE-2021-28711, CVE-2021-28712, CVE-2021-28713)
Jürgen Groß discovered that the Xen network backend driver in the Linux
kernel did not adequately limit the amount of queued packets when a guest
did not process them. An attacker in a guest VM can use this to cause a
denial of service (excessive kernel memory consumption) in the network
backend domain. (CVE-2021-28714, CVE-2021-28715)
Szymon Heidrich discovered that the USB Gadget subsystem in the Linux
kernel did not properly restrict the size of control requests for certain
gadget types, leading to possible out of bounds reads or writes. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2021-39685)
It was discovered that a race condition existed in the poll implementation
in the Linux kernel, resulting in a use-after-free vulnerability. A local
attacker could use this to cause a denial of service (system crash) or
possibly execute arbitrary code. (CVE-2021-39698)
It was discovered that the simulated networking device driver for the Linux
kernel did not properly initialize memory in certain situations. A local
attacker could use this to expose sensitive information (kernel memory).
(CVE-2021-4135)
Eric Biederman discovered that the cgroup process migration implementation
in the Linux kernel did not perform permission checks correctly in some
situations. A local attacker could possibly use this to gain administrative
privileges. (CVE-2021-4197)
Brendan Dolan-Gavitt discovered that the aQuantia AQtion Ethernet device
driver in the Linux kernel did not properly validate meta-data coming from
the device. A local attacker who can control an emulated device can use
this to cause a denial of service (system crash) or possibly execute
arbitrary code. (CVE-2021-43975)
It was discovered that the ARM Trusted Execution Environment (TEE)
subsystem in the Linux kernel contained a race condition leading to a use-
after-free vulnerability. A local attacker could use this to cause a denial
of service or possibly execute arbitrary code. (CVE-2021-44733)
It was discovered that the Phone Network protocol (PhoNet) implementation
in the Linux kernel did not properly perform reference counting in some
error conditions. A local attacker could possibly use this to cause a
denial of service (memory exhaustion). (CVE-2021-45095)
It was discovered that the eBPF verifier in the Linux kernel did not
properly perform bounds checking on mov32 operations. A local attacker
could use this to expose sensitive information (kernel pointer addresses).
(CVE-2021-45402)
It was discovered that the Reliable Datagram Sockets (RDS) protocol
implementation in the Linux kernel did not properly deallocate memory in
some error conditions. A local attacker could possibly use this to cause a
denial of service (memory exhaustion). (CVE-2021-45480)
It was discovered that the BPF subsystem in the Linux kernel did not
properly track pointer types on atomic fetch operations in some situations.
A local attacker could use this to expose sensitive information (kernel
pointer addresses). (CVE-2022-0264)
It was discovered that the TIPC Protocol implementation in the Linux kernel
did not properly initialize memory in some situations. A local attacker
could use this to expose sensitive information (kernel memory).
(CVE-2022-0382)
Samuel Page discovered that the Transparent Inter-Process Communication
(TIPC) protocol implementation in the Linux kernel contained a stack-based
buffer overflow. A remote attacker could use this to cause a denial of
service (system crash) for systems that have a TIPC bearer configured.
(CVE-2022-0435)
It was discovered that the KVM implementation for s390 systems in the Linux
kernel did not properly prevent memory operations on PVM guests that were
in non-protected mode. A local attacker could use this to obtain
unauthorized memory write access. (CVE-2022-0516)
It was discovered that the ICMPv6 implementation in the Linux kernel did
not properly deallocate memory in certain situations. A remote attacker
could possibly use this to cause a denial of service (memory exhaustion).
(CVE-2022-0742)
It was discovered that the IPsec implementation in the Linux kernel did not
properly allocate enough memory when performing ESP transformations,
leading to a heap-based buffer overflow. A local attacker could use this to
cause a denial of service (system crash) or possibly execute arbitrary
code. (CVE-2022-27666)
wavpack-5.4.0-5.fc36
FEDORA-2022-7df99d9f80
Packages in this update:
wavpack-5.4.0-5.fc36
Update description:
Fix for CVE-2021-44269
wavpack-5.4.0-5.fc35
FEDORA-2022-0fc7b22bcd
Packages in this update:
wavpack-5.4.0-5.fc35
Update description:
Fix for CVE-2021-44269
wavpack-5.4.0-5.fc34
FEDORA-2022-737f020ede
Packages in this update:
wavpack-5.4.0-5.fc34
Update description:
Fix for CVE-2021-44269
xen-4.14.4-3.fc34
FEDORA-2022-4111b25ccc
Packages in this update:
xen-4.14.4-3.fc34
Update description:
Racy interactions between dirty vram tracking and paging log dirty
hypercalls [XSA-397, CVE-2022-26356]
race in VT-d domain ID cleanup [XSA-399, CVE-2022-26357]
IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues [XSA-400,
CVE-2022-26358, CVE-2022-26359, CVE-2022-26360, CVE-2022-26361]
xen-4.15.2-3.fc35
FEDORA-2022-dfbf7e2372
Packages in this update:
xen-4.15.2-3.fc35
Update description:
Racy interactions between dirty vram tracking and paging log dirty
hypercalls [XSA-397, CVE-2022-26356]
race in VT-d domain ID cleanup [XSA-399, CVE-2022-26357]
IOMMU: RMRR (VT-d) and unity map (AMD-Vi) handling issues [XSA-400,
CVE-2022-26358, CVE-2022-26359, CVE-2022-26360, CVE-2022-26361]